Электронные ТРВ. Принцип работы.

Терморегулирующие вентили используются в системах охлаждения и кондиционированния воздуха для контроля перегрева.

Задача электронных ТРВ (терморегулирующий вентиль) — подать определенную порцию фреона в испаритель и обеспечить условия для испарения хладагента, отрегулировать реакцию на выходе из испарителя, замерить перегрев.

Характеризуются по-сравнению с механическими ТРВ гораздо большей точностью работы, скорость реагирования (скорость открытия, закрытия) гораздо выше и её можно менять. Более точные регулировки поддержания перегрева, более быстрая реакция на внешние воздействия. Возможны воздействия оператора на логику работы. Очень гибкая система позволяет воздействовать на неё в различных точках и видеть результат нашего воздействия, в отличие от механического ТРВ, с которым мы ничего сделать не можем, кроме как увеличить подачу хладагента или уменьшить. Мы можем полностью влиять на все процессы электронного ТРВ с помощью контроллера.

Иногда слишком большая скорость открытия, закрытия ЭРВ (электронных расширительных вентилей)  не нужна, т.к. система начинает работать «вразнос», ЭРВ открывается, закрывается, давление начинает резко расти и падать. Например для  камеры с воздухоохладителем не так важно использование электронного вентиля.

В чиллерах при охлаждении жидкости может поступить отепленный пропиленгликоль, его нужно быстро охладить и механический ТРВ может не успеть справиться, для этого используются ЭРВ.

Основные разновидности: 1) импульсного типа 2) с приводом от шагового двигателя, с плавным закрытием проходного сечения.

пробел

 ЭРВ импульсного типа.

По устройству похож на соленоидный клапан.Имеется мембрана со штоком, шток находится в гильзе и на гильзу надевается электромагнитная катушка (как правило постоянного тока, напряжением 220 В, 12 В, 24 В).

 

ЭРВ импульсного типа

ЭРВ импульсного типаКаждым электронным вентилем управляет свой контроллер. Вентиль может быть полностью открыт или полностью закрыт (работать в импульсном режиме). В результате хладагент поступает в испаритель порциями. Контроллер даёт напряжение, скажем на 2 секунды шток открылся полностью, фреон пошёл, 2 секунды проходит, шток закрывается, на обратной стороне испарителя (на выходе) стоит датчик давления и датчик температуры трубы. По датчику давления (преобразователю давления)  в трубе, на выходе из испарителя замеряется давление и преобразуется  в температуру кипения.

В той же точке трубы другой датчик замеряет температуру трубы. Он замеряет температуру в этой точке и получает, к примеру, 10 °С, высчитывает перегрев 10°С, после этого смотрит сколько задано оператором и какой перегрев ему нужно поддерживать. Оператор задал 5 °С, (испаритель не полностью залит фреоном), импульс даётся больше 2 секунд и увеличивается до достижения перегрева в 5 °С.

Электронные вентили импульсного типа подвержены гидроудару. Точность регулировки небольшая. Такие ЭРВ можно применять на холодильных системах средней мощности и большой мощности. На холодильных системах небольшой мощности, порядка 10-15 кВт, экономически нецелесообразно. Наличие датчиков давления и температуры обязательно и можно поставить  ещё 2 датчика: на входе в испаритель и на выходе (замеряют температуру воздуха в камере) и благодаря  этим датчикам контроллер собирает больше информации о процессе, который происходит в данный момент  внутри испарителя.

Данные электронные вентили работают по принципу соленоида и могут применяться без дополнительного соленоида, но в этом случае, если возникнет необходимость разобрать ЭРВ, то этого не получиться сделать, т.к. на входе жидкий фреон и его ничто не перекрывает.

пробел

ЭРВ с приводом от шагового двигателя.

ЭРВ с приводом от шагового двигателя

Конструкция ЭРВ

пробел

Имеется седло, куда входит ответная часть шток-вентиля и перекрывает это седло. Принцип действия вентиля схож с принципом обычного вентиля, который перекрывает воду. Имеется шток с клапаном, привод этого штока от электрического двигателя постоянного тока и он вращается либо в одну сторону, либо в другую (в одну закрывается, в другую открывается). К Валу прикреплен цилиндр, который при вращении вала движется вверх и вниз (поршень вместе с клапаном), один оборот вала соответствует подъему клапана на 1 мм, отсюда небольшое изменение размера проходного сечения. На одном валу имеется 2 двигателя. Один подключен, другой обесточен в этот момент, у двигателей вращение в разные стороны, т.е. имеется 2 обмотки с 1 валом. При подаче напряжения на одну обмотку вращение происходит в одну сторону, при подаче напряжения на другую обмотку — вращение в другую сторону..

Вращение происходит пошагово. Определенное количество шагов у данного вентиля соответствует полному открытию или закрытию вентиля, например 2500 шагов или 5000 шагов (модификация конкретного вентиля). Параметр необходимо будет ввести в контроллер на количество шагов для максимального открытия вентиля. Если ввести неправильно, то регулирование вентиля будет неправильным.

На входе вентиля имеется смотровой глазок, мы можем видеть какой фреон поступает на вентиль: жидкий или с пузырьками газа.

Преимущества ЭРВ с шаговым двигателем: более точная регулировка подачи хладагента, может очень точно поддерживать перегрев.

Датчики ставятся те же самые. Управляет ЭРВ контроллер, в который записываются параметры при пуско-наладке: требуемый перегрев, максимальное количество шагов для полного открытия вентиля, минимальное количество шагов, необходимое для полного закрытия. Габариты этого ЭРВ побольше, чем импульсного, конструкция сложнее.

Электронный терморегулирующий вентиль используется потому, что он позволяет поддерживать минимальный перегрев, это гарантия того, что не будет происходить усушка. Чем выше перегрев, тем ниже температура кипения, тем интенсивнее будет осаждаться лёд на ламелях и интенсивней будет забираться влага с продуктов.

ЭРВ рекомендуется ставить на большие мощности. В камере может находиться несколько испарителей, они будут влиять друг на друга и отрегулировать их будет очень сложно, в таком случае также рекомендуется ставить ЭРВ.